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Hypersonic flows involving two or more bodies travelling in close proximity to one
another are encountered in several important situations. The present work seeks to
explore one aspect of the resulting flow problem by investigating the forces experienced
by a secondary body when it is within the domain of influence of a primary body
travelling at hypersonic speeds.

An analytical methodology based on the blast wave analogy is developed and used
to predict the secondary force coefficients for simple geometries in both two and three
dimensions. When the secondary body is entirely inside the primary shocked region,
the nature of the lateral force coefficient is found to depend strongly on the relative
size of the two bodies. For two spheres, the methodology predicts that the secondary
body will experience an exclusively attractive lateral force if the secondary diameter
is larger than one-sixth of the primary diameter. The analytical results are compared
with those from numerical simulations and reasonable agreement is observed if an
appropriate normalization for the relative lateral displacement of the two bodies is
used.

Results from a series of experiments in the T5 hypervelocity shock tunnel are also
presented and compared with perfect-gas numerical simulations, with good agreement.
A new force-measurement technique for short-duration hypersonic facilities, enabling
the experimental simulation of the proximal bodies problem, is described. This
technique provides two independent means of measurement, and the agreement
observed between the two gives a further degree of confidence in the results obtained.

1. Introduction

Aerodynamic interactions between two or more bodies travelling at hypersonic
speeds may occur in several important situations, both natural and man-made. We
may point to launch vehicle stage separation, re-entry of either multiple vehicles
or a single vehicle with a trailing ballute, and hypersonic store separation as
man-made instances, whereas the planetary entry of a binary asteroid system and
atmospheric meteoroid fragmentation represent naturally occurring examples in which
such interactions may be encountered.

Previously, several authors have investigated problems involving aerodynamic
interactions between hypersonic proximal bodies in association with modelling the
behaviour of a fragmented meteoroid in a planetary atmosphere. Among the first
to explore such a problem were Passey & Melosh (1980), who looked at possible
mechanisms for cross-range dispersion of fragments in crater fields. They concluded
that the combined effects of bow shock interactions, crushing deceleration, and
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possibly spinning of the parent meteoroid were primarily responsible. They also
obtained an estimate for the transverse velocity of two fragments resulting from
near-field shock interactions. Artem’eva & Shuvalov (1996) carried out numerical
simulations of two fragments travelling in various relative configurations and found
that when a secondary fragment was travelling within the shocked region created by
a primary fragment, it experienced a force towards the axis of travel of the primary.
In further simulations (Artemieva & Shuvalov 2001), these authors found that this
phenomenon resulted in a collimation effect for a large number of fragments. This
effect had previously been noted in experiments using the NASA—Ames vertical gun
by Schultz & Sugita (1994).

Extensive experimental studies relevant to the current problem have also been
carried out in the context of store and stage separation at hypersonic speeds.
Particularly noteworthy are the captive trajectory systems developed at the Arnold
Engineering and Development Center for store separation testing (Carman 1980) and
more recently applied to the problem of risk reduction during stage separation of the
NASA Hyper-X vehicle (Woods, Holland & DiFulvio 2001).

The current work is concerned with investigating a relatively simple version of the
hypersonic proximal bodies problem, namely with determining the forces acting on a
secondary body when it is travelling at some point within the shocked region created
by a hypersonic primary body. We hereinafter refer to these two bodies simply as the
secondary and the primary. Within this simplified problem, we identify three main
physical regions in which we would expect the nature of the secondary forces to
differ qualitatively. First, if the secondary is travelling in the wake region immediately
behind the primary, the forces experienced will be small because of aerodynamic
shielding. If the secondary lateral displacement is subsequently increased such that it
is exposed to the primary-shock-processed flow, we would expect the axial (drag) force
to be increased over the prior situation, but it is not immediately obvious whether
the lateral force will be attractive or repulsive (relative to the primary axis of travel).
Finally, if the lateral displacement of the secondary is increased further, so that it is
impinged upon by the primary bow shock, the shock interactions will produce locally
high pressure on the front of the secondary, resulting in a large drag force. Also, as
the flow on the outer side of the secondary will be effectively singly shocked, while
that on the inner side will be doubly shocked and thus at a higher pressure, we would
expect a repulsive lateral force to develop in this configuration.

In § 3, an analytical model is developed that is valid in the second region described
above. Numerical simulations covering all three regions are outlined in §4, and
results from these are compared with analytical results in §5. In §6, we describe a
series of experimental simulations of configurations falling in the latter two regions.
To enable this experimental investigation, a new force-measurement technique for
hypervelocity facilities has been developed; a review of force-measurement techniques
for shock-driven hypersonic facilities is presented in § 2. Conclusions are drawn in §7.

In order to gain a general understanding of the proximal bodies problem, the study
will be concerned with relatively simple geometries: we will limit ourselves to the
cases of two circular cylinders and two spheres. In either case, the two bodies will be
assumed to be stationary with respect to one another.

2. Review of force-measurement techniques in hypervelocity facilities

As part of the current study, experimental force measurements have been carried
out in the TS5 hypervelocity shock tunnel at the California Institute of Technology.
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Force- and moment-measurement in high-enthalpy hypersonic wind tunnels, such as
TS5, has traditionally been restricted by the short test time intrinsic to these facilities.
This flow time can be less than the period of the lowest natural frequency of a typical
model and support, rendering measurement by conventional force balance techniques
impractical. This has necessitated the development of other techniques. These may be
loosely divided into two groups.

The first group consists of attempts to modify traditional force balance techniques
so that they are more suited to short duration measurements. Storkmann, Olivier &
Gronig (1998) combined a model of high natural frequency (above 1kHz) with
accelerometers mounted in either the model or support to compensate for support
oscillations. Measurements were made using a six-component strain gauge balance
at two facilities: the Aachen shock tunnel TH2 and the Longshot facility at the
von Karman Institute in Brussels. The success of this method appears to be highly
dependent on model geometry, however. Results for a cone model showed good
agreement with reference data, but agreement for a capsule model was less satisfactory,
and the technique could not be applied to slender bodies, as such geometries are unable
to accommodate internal mounting of the balance.

Another technique along these lines is the stress-wave force balance technique, first
proposed by Sanderson & Simmons (1991). This technique was developed for use with
long models for which the test time is just sufficient to establish steady flow over the
model, but not sufficent to establish stress equilibrium within the model. Thus, instead
of measuring steady-state forces, this technique involves the interpretation of stress
waves induced within the model, necessitating extensive calibration to determine the
response function of the system. Mee (2003) achieved 3 % accuracy in calibration
studies for this technique and performed measurements in the T4 shock tunnel at
the University of Queensland, Australia. These, however, were limited to a single
component drag measurement — accuracy in earlier attempts at multi-component
force measurement (Mee, Daniel & Simmons 1996) was limited to 11 % accuracy.
An attempt was made to apply this method to three-component force measurements
on a large scramjet model (Robinson et al. 2004), but in this configuration the
measurements were adversely affected by facility vibrations.

The second group consists of techniques that make use of a support allowing for
free-floating model behaviour during the test time. The short test time of the relevant
facilities is actually an advantage for such techniques, as even for high loads the extent
of motion of the model during the test time will be extremely small. Sahoo et al. (2003)
implemented a method in which the model was mounted in flexible rubber bushes,
allowing free-floating behaviour in flows of millisecond duration. The force and
moments were measured during this period by means of embedded accelerometers.
These authors achieved good agreement with theoretical values (typically 3-8 %) in
a series of measurements on blunted cones in the HST2 hypersonic shock tunnel
at the Indian Institute of Science, Bangalore. This is a relatively low-load facility,
however — dynamic pressures in a facility such as the TS5 are typically higher by
an order of magnitude or more. It is thus questionable whether model motions in
these facilities could be accommodated by such a set-up. This technique also has
the disadvantage of requiring extensive finite-element modelling, and the required
mounting limits the geometries that may be simulated. Joarder & Jagadeesh (2004)
implemented another free-floating technique in the HST?2 facility, but this was limited
to drag measurements.

Naumann et al. (1993) devised a method to allow for free flight during the steady-
flow period whereby the model was mounted on a support that released just prior
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FIGURE 1. Representative physical situation for which the analytical model is developed. The
two bodies may be either circular cylinders or spheres.

to the onset of the flow and tightened again shortly afterwards. Again, forces and
moments were measured by means of accelerometers embedded in the model. This
method relied on a cumbersome model support, however, which again limited the
geometries that could be studied. Tanno et al. (2004) measured the forces generated
by the interaction of a shock wave with a sphere in the vertical shock tube at the
Interdisciplinary Shock Wave Research Center at Tohoku University. The sphere was
suspended from a wire of sufficient length (~4 m) that tensile stress waves in the wire
had a negligible effect during the test time. Obviously, such a suspension method is
not practical in a typical horizontal flow wind tunnel.

The technique that has been developed in the present work falls in this latter group.
A simple support system consisting of cotton thread, that is destroyed at the onset of
the flow, is used in conjunction with a catcher that terminates the model motion after
the end of the test time. Accelerations are recorded by an embedded accelerometer
and by images taken with a high-speed digital camera. We are grateful to one of the
referees for bringing to our attention that a similar suspension and force-measurement
technique had been employed by Warren, Kaegi & Geiger (1961).

3. Analytical modelling

First, we formulate an analytical model to predict the forces acting on the secondary
for configurations in which it lies entirely within the primary shocked region. For
simplicity, a uniform free stream consisting of a perfect gas will be assumed.

The situation under consideration is shown in figure 1 and the problem parameters
are indicated. The two bodies may be either both circular cylinders or spheres. The
primary, of diameter d;, generates a bow shock of radius Ry(x), where x is the
axial displacement measured from the leading point of the shock. The secondary, of
diameter d; < di, is located downstream of the primary shock at a lateral displacement
r. We wish to determine the axial (drag) and lateral (lift) force components on the
secondary.

In hypersonic blunt-body flows, the viscous force contributions may often be
neglected in favour of the pressure contributions, and thus, to approximate these
force components, we require an estimate of the pressure distribution on the surface
of the secondary. The assumption of a large Mach number allows us to make use of
two results from classical hypersonics that are critical to our model. First, the blast
wave analogy is used to approximate the flow conditions within the shocked region
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created by the primary, and secondly, given knowledge of these conditions, a modified
version of the Newtonian distribution is used to approximate the secondary surface
pressure distribution.

The blast wave analogy relates the flow produced by a body moving at hypersonic
speeds to that produced by a point explosion. A similarity solution to the latter
problem in a uniform, perfect gas atmosphere was first proposed by Taylor (1950)
and full analytic solutions were subsequently obtained by Sedov (1959) in one, two
and three space dimensions. The analogous flow produced by a hypersonic body (with
appropriate symmetry) may be obtained by use of the equivalence principle, in which
the time variable in the point explosion solution (of one dimension less than that of
the body) is replaced by x/V, where V is the speed of the body in the (negative)
x-direction. The shock radius obtained scales as R, oc x*? for a two-dimensional
(symmetric) body and R, oc x!/? for a three-dimensional (axisymmetric) body. The
constant of proportionality in each case depends on the drag coefficient and the
projected frontal surface area of the body, and the ratio of specific heats of the gas.

The blast wave analogy is most appropriate for approximating the flow produced by
a rod- or plate-like blunt-nosed body, rather than the compact bodies we are interested
in here. It is thus to be understood that our results are not valid in the wake region
immediately behind the body and also that physical features such as separation shocks
are absent from our model. The blast wave solution is also known to have a number
of intrinsic problems, even when used for more appropriate geometries. A salient
discussion of these may be found, for example, in Hayes & Probstein (1966). For our
purposes, the most important of these problems is the presence of an entropy wake
in the solution that is significantly stronger than that in the corresponding physical
flow. This leads to questionable results for lateral secondary displacements extending
out past the influence of the body wake region. A final problem with the blast wave
solution is that it is known to produce a somewhat smaller shock radius than that
produced by a physical blunt body (see, for example, Lukasiewicz 1962). A further
discussion of this last problem appears in §5.3.

3.1. Two-dimensional modelling

We first consider the two-dimensional case in which both bodies are circular cylinders
and develop an approximation to the forces, per unit depth, on the secondary.
The flow solution in the primary shocked region is assumed to be given by the two-
dimensional (planar) blast wave analogy, but to approximate the pressure distribution
on the secondary, let us first consider the same body travelling in the uniform
hypersonic free stream outside the shocked region, the conditions of which we denote
by the subscript co. For large Mach numbers, a good approximation to the pressure
distribution is the modified Newtonian distribution, first proposed by Lees (1955).
This may be written in the form
v [ (ph— pl)cos’8 + p., for |6] <m/2,

r(o) = {p; for m/2<10| <m, (3.1)
where 6 is the angle measured from the stagnation point, p, is the pressure at the
stagnation point, and we have defined the pressure coefficient p; = p;/ % 0, V2, the use
of which is somewhat more convenient here than that of the usual pressure coefficient,
C,. For an inviscid perfect gas, po is the pressure obtained by passing a free-stream
flow through a normal shock, followed by an isentropic deceleration to stagnation
conditions. If subscript 2 denotes conditions immediately behind the normal shock,
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FIGURE 2. (a) Flow angle, 8, and (b) stagnation-point pressure coefficient, pp, in the
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We now consider the secondary cylinder inside the primary shocked region, denoting
conditions in this region by the subscript 1. We use the above modified Newtonian
description as our reference distribution, with pj replacing p/, in (3.1) and (3.2), and
M, replacing M,, in (3.2) and (3.3). A further question arises here concerning the
size of M;. In particular, in the entropy wake, the Mach number is typically small
as a result of the high temperatures in this region. Thus, even if M, is large, M, is
not necessarily so, and the modified Newtonian distribution may not be appropriate.
Having already noted the questionable validity of our model in the entropy wake,
however, we proceed with our formulation. We now make two modifications to
our reference distribution in light of the altered flow conditions encountered by the
secondary inside the shocked region.

First, we must account for the fact that the flow direction seen by the secondary
is no longer aligned with that of the free stream, but is deflected by the primary
bow shock. The flow angle resulting from this deflection, as given by the blast wave
analogy, is shown in figure 2(a), plotted against the normalized lateral displacement,
r/ Ry, at various distances downstream. The ratio of specific heats used here is y = 1.4,
and this value will be assumed throughout this section. This deflection will have the
effect of shifting the stagnation point to the inner side of the body, decreasing the
drag slightly while providing a repulsive contribution to the lateral force, which we
will equate with a positive lift contribution. Our choice of a circular cylinder becomes
important at this point as the rotational symmetry possessed by this shape allows the
modification to the reference distribution produced by this effect to be easily dealt
with.

Secondly, we note from figure 2(b), in which the variable pj is plotted as a function
of r/R; at various distances downstream, that p( varies strongly with r/R;. As R;

(3.3)
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is a function of x, p; will vary with both x and r over the area covered by the
cylinder. Note, in particular, that the effective stagnation pressure will be higher
on the outer side of the cylinder than on the inner side, from which will arise an
attractive contribution to the lateral force. We approximate this effect by Taylor-series
expanding p, to the linear terms in x and r on the surface of the cylinder, giving an
effective stagnation pressure of

off 1d2< opo . dpo

Po =Pt 50 \aeyd) "™ T aG/dy)

In this expression, all lengths have been non-dimensionalized by the primary diameter
dy; the variables dpo/d(r/dy) and dpy/d(x/d;) may be determined by differentiating
(3.2). It is not clear, however, that the x variations should be included with the r
variations, as, given that the flow is primarily in the x-direction, it is not obvious
that x variations can legitimately be localized in this manner. Also, given that the pj
profiles in figure 2 vary only a small amount with downstream displacement and that
R, is a relatively weak function of x (R, ~ x?/?), x variations will be less significant
than r variations. Thus, we shall include them here for the sake of completeness, but
with the understanding that they are not crucial to our model.

Using these modifications to the reference distribution, we may write the drag and
lift coefficients as

_1 w2 ’ / 1 d; 8(p(/)_p,1) . a(p(,)_pll)
CD‘z/W[”°_”1+2dl< otrdn M0 T Tiday COS(Q_‘S))}

cos 9) . (3.4)

x cos’ 6 cos(f — §)do

—i—l/ {pﬁ + L d> ( Ll sin(6 — §) — P cos(@—rS))] cos(6 — 8)do,

2 ) . 2d; \ 3(r/dy) d(x/d)
(3.5q)
L Mrr ., Ldy (3(py— pY) 3(py — pl)
CL__z/n/z [” 0P 1+2dl< oy T 0y COS(Q_‘S))}

x cos® 6 sin(6 — 8)d6

—1/ {p’l—l-ijz( P Gino —5)— 21 cos(@—S))]sin(O—S)d@.
1

2 )« a(r/dy) d(x/dy)
(3.5h)
These integrals may be evaluated to yield
2 / ’ T dy . 8([’6 - pl)
= = J— - = 2 v 7
Cp = 5 cosd(py — p) 24 sin 268 2(r7d))
T dp dpo—py) mdr p;
———=(2 28)———— — —— 3.6
164, > TS50y " dd awsdy)’ (3.6a)
2 ns(n ) o8P0 — PY)
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16 4 C0(r/dy) 4d 0(r/dy)
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As the diameter ratio, d»/d;, is the only parameter we can freely choose in these
coefficient expressions, it is of interest to determine the effect of varying this parameter.
We are primarily interested in cases for which d,/d; < 1, so, noting that over most
of the shocked region || is small and p{>> p| (and similarly with their respective
derivatives), we may approximate the above formulae as

Cp ~ % py, (3.7a)

o2 T d; ap(’)
CL =~ 5 pysiné — 164, 3(r/dy)’

Equation (3.7a) is simply the drag coefficient in an undeflected uniform free stream.
The behaviour of the approximate lift coefficient (3.7b) is potentially more interesting,
however, as this expression contains two terms of opposite sign. As only the second
term depends on body size, we have the potential for a qualitative change of behaviour
as the body size is varied. In particular, there will be a tendency for the lift coefficient
to become increasingly negative as the diameter ratio is increased. This may be
understood physically to arise from the fact that the deflection of flow angle, which
is responsible for the positive contribution to the lift coefficient, does not vary with
body size, whereas for a larger secondary body, the difference in effective stagnation
pressure from one side to the other will be greater, resulting in a larger negative
contribution.

This body-size effect is observed in figure 3, in which the lift and drag coefficients —
the full expressions, (3.6), rather than the approximations, (3.7) — are plotted for
various diameter ratios and distances downstream. In addition to the variation of lift
coefficient with body size, we also note a tendency for the lift coefficient to become
more positive with increasing downstream displacement, indicating that the second
term in (3.7b) decays more rapidly than the first. The drag coefficient, in contrast,
depends only slightly on the diameter ratio and decreases in magnitude gradually as
the downstream displacement is increased.

(3.7h)

3.2. Three-dimensional modelling

In the three-dimensional case, we consider configurations involving two spheres.
We proceed in a manner similar to the two-dimensional case, again seeking to
approximate the pressure distribution on the secondary when it is inside the primary
shocked region, the conditions of which are assumed to be given by the axisymmetric
blast wave analogy. The modified Newtonian distribution on a sphere in a uniform
free stream may be written

o) (py— pl)cos’6 + p.. for 6 €[0,m/2),
PRET= for 6 € [n/2,m),

o0

(3.8)

where 6 is the zenith angle measured from the stagnation point and we have again
defined the pressure coefficient p; = p;/ % 0 V2. The variable p) may again be obtained
from (3.2) and (3.3).

The flow angle and stagnation-point pressure profiles in the axisymmetric blast
wave analogy are qualitatively similar to the analogous planar profiles seen in figure 2.
We thus consider the same two modifications to the reference pressure distribution,
namely the deflection in flow angle and the Taylor-expanded variation in effective
stagnation pressure over the surface of the sphere. An additional complication is
introduced in the three-dimensional case as isosurfaces in the blast-wave solution
are now axisymmetric rather than planar. To make the coefficient integrals tractable,
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however, we assume that these isosurfaces are locally flat over the volume occupied by
the secondary. This is a reasonable approximation provided the lateral displacement
of the secondary is large compared to the body radius.

Making use of Euler angles, and assuming without loss of generality that the
direction of increasing lateral displacement is aligned with the positive lift axis, we
may write the three-dimensional drag and lift coefficients as

L2 Ldy (3(py—pi).  (po—Ph) )] >
= _ g (I - X || cos"@xsinddod
/ / [p° 24, ( ar/d) | aG/dy) ¢

" Ll 0ph o 9ph ]
//{ 2d; (a(r/dl)r_3(x/d1)x>:|xsul0d9d¢’ (3.9a)
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These double integrals may be evaluated to yield

Cp = 5 cos8(py— p) — 11552 sin28w

- 11,5;1?(2 + cosza)a(ap(i/—dﬁi) _ i;l? 8(2%1)’ (.100)
CL = 3sind(py — pi) — 115;? sin2aw

- 1152(2 — cos 23)3(;’(3/—6{3’1) - ijj 83%1)‘ -

As in the planar case, we may approximate (3.10) by noting that |§| is small and
po > pi, thus obtaining

Cp %p(’), (3.11a)

o1l 7 1 dz 8p(/)
CL 2 Posind = 45 St /dy)’
These approximate expressions are similar in form to the corresponding planar
expressions, and the same comments apply. In particular, we see again that the lift
expression has two terms of opposite sign, only the second of which has a dependence
on body size. Thus we again predict a qualitative change in lift behaviour as the
diameter ratio is varied and this is seen in figure 4, in which the full formulae are
plotted. While the effect of body size on the lift profiles is similar to that in the planar
case, the downstream displacement effect does not carry over — while the magnitude of
the lift value decreases as x/d; is increased, there is very little qualitative change. This
difference is probably due to the dp;/d(r/d;) term in (3.7b) decaying more rapidly
than that in (3.11b), as the shock radius grows more rapidly with increasing x in the
former (planar) case.

Given the effect that has been observed of the diameter ratio on the lift coefficient,
it is of interest to ask whether there is a critical ratio above or below which the
lift experienced by the secondary body is exclusively of one sign within the shocked
region. We thus set (3.10b) to zero and solve for d>/d;. The resulting curves, as
functions of r/R,, are shown in figure 5 for various distances downstream. These
may be read in the following manner: at the given distance downstream, a secondary
body for which the diameter ratio lies above the curve will experience a negative
lift coefficient, and thus an attractive lateral force, whereas one lying below will
experience a positive lift coefficient. We see that d,/d; must be vanishingly small for
the lift coefficient to be exclusively positive inside the shocked region, although for

Q

(3.11b)
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a finitely small secondary, the region in which the lift coefficient is negative will be
affected by the entropy wake, meaning our model is of questionable validity here.
There does appear to be a finite value of d,/d; above which the lift coefficient will
be exclusively negative throughout the shocked region, however. This critical value
is at dp/d; =0.165, i.e. a primary body approximately six times the diameter of the
secondary body. A secondary body with a relative diameter larger than this value, if
initially travelling within the shocked region with the same velocity as the primary
body, is certain to be entrained, whereas smaller bodies have the possibility of being
ejected from the shocked region by aerodynamic effects. Such a selection effect could
have consequences, for example, on the distribution of fragments in a crater field
resulting from the atmospheric breakup of a meteoritic body.
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4. Computational modelling

Computational modelling of the proximal bodies problem has been carried out
in both two and three space dimensions using the AMROC (Adaptive Mesh
Refinement in Object-oriented C++) software developed by Deiterding (2003).
AMROC is a Cartesian adaptive mesh refinement (AMR) framework that implements
the block-structured AMR algorithm after Berger & Colella (1988), designed
specifically for the solution of hyperbolic fluid-flow problems, on distributed memory
machines. Geometrically complex, possibly moving, boundaries are incorporated
into simulations by employing a level-set-based ghost-fluid approach. Details of
the boundary treatment and advanced verification and validation results for gaseous
flows can be found, for instance, in Deiterding (2005). The framework architecture and
the use of AMROC for fully coupled shock- and detonation-driven fluid—structure
interaction problems is described in depth in Deiterding et al. (2005).

In order to provide direct comparisons with the analytical results of the previous
section, simulated body geometries in the computations were limited to circular
cylinders in the two-dimensional case and spheres in the three-dimensional case.
In this section, we will outline the computational methodology and results, and
comparisons with the analytical results will be given in the following section.

4.1. Two-dimensional computational modelling

All two-dimensional computations were carried out on the parallel compute cluster
of the DOE ASC Alliance Center at the California Institute of Technology, consisting
of 100 single processor Pentium-II nodes connected with Gigabit Ethernet. The Euler
equations were solved for a perfect gas using a time-explicit finite-volume approach.
The numerical flux was evaluated by employing the flux-vector splitting scheme
after Van Leer within the second-order accurate MUSCL-Hancock slope-limiting
technique. Godunov splitting was used for the multi-dimensional extension (cf. Toro
1999). In all computations described in this section, the free stream was at uniform
conditions with a ratio of specific heats of y =1.4.

The parameters that were varied were the downstream and lateral displacements of
the secondary cylinder, the free-stream Mach number, and the ratio of diameters of
the two bodies. The runs were grouped according to the downstream displacement,
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FIGURE 6. Visualization showing the refinement strategy used in the numerical simulations.

Mach number and diameter ratio, and for each combination of these, a series of
simulations was performed in which the lateral position of the secondary body
was varied incrementally from immediately behind the primary body to outside the
primary bow shock. The lateral displacement was in the upwards direction, so a
positive lift coefficient indicates a repulsive force from the plane of symmetry of the
primary body.

Two values for each of the Mach number, the downstream displacement and the
diameter ratio were chosen. Simulated Mach numbers were M, =10 and 50, with
CFL numbers of 0.9 and 0.7, respectively. The downstream displacements used were
2 and 4 primary body diameters (centre-to-centre), with physical domains of 5.2 x5.2
and 8.3 x 7.3 primary diameters, respectively. The corresponding base grids were
200 x 200 and 320 x 280. The values of the diameter ratio simulated were d,/d; =1/2
and 1/6.

Two additional levels of dynamic isotropic mesh refinement, each with a refinement
factor of 2, were allowed. Note that in AMROC, mesh adaptation is realized by
clustering several finite-volume cells, requiring refinement into larger, succesively
embedded, rectangular blocks of uniformly refined step size. Characteristic of the
Berger & Colella approach is that spatial and temporal mesh widths are refined
equally, leaving the CFL number (in principle) unaltered.

The refinement indicator for the dynamic mesh adaptation was the scaled gradient
of the density. The boundaries of the embedded bodies were always refined up to the
highest level, resulting in an effective resolution of 154 cells for the primary body.
The refinement strategies were similar in two and three dimensions — a visualization
of a three-dimensional case (corresponding to the schlieren image seen in figure 8) is
shown in figure 6. Depicted are the successively embedded domains of the three levels
of additional refinement (shaded grey), together with the static sphere boundaries
(black). For reference, the primary and secondary bow shocks are shown as light grey
on the highest refinement level.

All permutations of the indicated choices of problem parameters were simulated.
Using 12 nodes, the compute time was typically 40 h CPU for a run on the physically
smaller grid and 60 h CPU for the larger grid, corresponding to 3.3 and 5 h wall clock
time, respectively.
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FIGURE 7. (b, ¢) Secondary force coefficients obtained from a set of two-dimensional numerical
simulations, a schlieren image from one of which is shown in (a). The lateral displacement is
normalized by the primary diameter, d;. The downstream displacement, centre-to-centre is 4d;
and the diameter ratio is 1/2: 0, M, =10; A, M,,=50. The Mach number in the schlieren
image is M., = 50.

To generate the flow in a given run, the velocity at the inlet boundary was ramped
up at constant density and pressure to the appropriate steady value. The lift and
drag values on each body were calculated on-the-fly by evaluating numerically the
surface integral of hydrodynamic pressure forces over the body. In the case of
the M,, =10 simulations, steady flow at the inlet boundary was established from
t =0.25, where ¢ is the computational time variable. One unit of computational time
corresponded to the physical time necessary for the free stream to cover approximately
21 primary diameters. Quasi-steady flow over the bodies (as determined from the force
coefficient profiles) was typically achieved by ¢ ~ 1. The simulations were continued
until #=3.0, with the mean lift and drag values calculated from r=2.1. For the
M., =50 simulations, this time scale was compressed by a factor of 5. In either case,
each simulation typically involved 3000 to 4000 time steps.

Figure 7 shows the force coefficients obtained from a given set of simulations, with
the parameters indicated in the caption. A computational schlieren image from one of
the simulations in this set is also shown. Error bars, indicating the standard deviation
in the relevant coefficient, are plotted for those cases in which the drag deviation is
more than 5% of the mean value. As may be seen, this occurs exclusively at small
values of r/d; (r/d; <1.5) and is caused by unsteadiness in the flow produced by
interactions of the secondary with either the wake region or the separation shock from
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Downstream displacement 1.5 1.5 1.5 4
Mach number 10,50 10 50 10,50
Diameter ratio (d,/d;) 1/2 1/4,1/8 1/4 1/2
Base grid 40 x 40 x 32 40 x 48 x 48 40 x 48 x 48 64 x 56 x 32
Additional refinement 2,2,2 2,24 2,24 2,22
Physical domain 39x39x%x3.1 39x47x47 39%x47x47 64x55x3.1

TaBLE 1. Details of the three-dimensional computations. The downstream displacements are
the centre-to-centre values; both these and the physical domains are given in terms of the
primary diameter.

the rear of the primary. As the lateral displacement is increased, we see that the drag
rises in a manner similar to that observed in the analytical profiles. Meanwhile, the
lift remains at small largely negative values until the primary shock begins to impinge
upon the secondary at r/d; = 3. At this point, the lift jumps sharply to positive values,
for reasons outlined in § 1. As the secondary clears the primary bow shock, the drag
and lift coefficients drop to their respective free-stream values of ~ 1.2 and 0. The
most notable difference between the two Mach numbers is in the location of the
hump observed in all the profiles at small r/d;. This feature in each case results from
the interaction of the secondary with the separation shock, which lies at smaller r/d;
for larger Mach numbers. Otherwise, the profiles from the two Mach numbers differ
relatively little, indicating that the hypersonic Mach number independence principle
holds reasonably well at this point downstream for Mach numbers = 10.

4.2. Three-dimensional computational modelling

A series of three-dimensional numerical simulations was carried out on the IBM
Power4+ machine DataStar at the San Diego Supercomputing Center. The flow over
two spheres was simulated by solving the three-dimensional Euler equations for a
perfect gas with the numerical techniques outlined in the previous section.

The parameters that were varied were the same as in the two-dimensional case,
namely the downstream and lateral displacements of the secondary body, the diameter
ratio, and the Mach number. Table 1 gives an overview of the combinations of
parameters that were simulated, along with some details of the computations. Larger
computational domains were used for smaller secondary bodies because, in these
simulations, a number of secondaries were simulated in a given run. These were each
at different lateral displacements, and sufficiently spaced that they did not interact
aerodynamically with one another. The additional refinement entry indicates the
isotropic refinement factor for each additional level: thus, three additional refinement
levels were used in each case, although the refinement factor at the highest level
varied. The primary body had an effective resolution of either 82 or 164 cells, the
latter being the case in the more refined simulations. The CFL number in all three-
dimensional simulations was 0.8, with typically around 1500 time steps computed.
Computational costs were typically 1000 h CPU using either 48 or 64 processors for
the less refined simulations and 4000 h CPU on 64 processors for the more refined
simulations (corresponding to 62.5h wall clock time).

The generation of the flow and the calculation of the force coefficients were
carried out in an analogous manner to the two-dimensional simulations. Although
the inlet-flow time scales were similar to those in two dimensions, it was found that a
quasi-steady flow over the two bodies took somewhat longer to establish here, and so
the mean coefficients were calculated over a somewhat shorter time period — typically
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FIGURE 8. (b,c) Secondary force coefficients obtained from a set of three-dimensional
numerical simulations, a schlieren image from one of which is shown in (a). The downstream
displacement, centre-to-centre is 4d; and the diameter ratio is 1/2: O, M, =10; A, M., =50.
The Mach number in the schlieren image is M., = 50.

the last 10 % of the total computational time, corresponding to a physical flow time
necessary for the free stream to cover approximately 10 primary body diameters.

Figure 8 shows the force coefficients from a group of three-dimensional simulations
as functions of the lateral displacement, with a schlieren image taken from one of
these also shown. The choice of parameters for this group is indicated in the caption.
The profiles are qualitatively similar to those seen in the two-dimensional case and
most of the same comments apply. Note, however, that the unsteadiness in the wake
region is typically much smaller here than in two dimensions. In all simulations
shown, the standard deviation in the drag value over the averaging period was less
than 2 % of the mean value. This may be attributed to the fact that the features that
give rise to this variation, such as the separation shock from the rear of the primary,
decay more rapidly in the downstream direction in the three-dimensional case.

We do observe a somewhat larger difference between the two Mach number
profiles than was seen in the two-dimensional case, indicating that the Mach number
independence principle is more questionable here (the downstream displacements are
the same in both cases). This is to be expected, however, since in three dimensions the
shock angle, B, is shallower, and so at equal distances downstream the assumption of
a large normal shock Mach number, M., sin 8, on which this principle relies is more
tenuous.
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Additional levels

of refinement Cp ACp Cr ACL
0 2.051 —0.051
1 2117 0.066 —0.128 —0.077
2 2.320 0.203 —0.228 —0.100
3 2.346 0.026 —0.183 0.045

TaBLE 2. Cp and C; values for the two-dimensional refinement study. A indicates the
difference between the values at current and previous levels of refinement.

4.3. Refinement studies

To assess the accuracy of the computational method, two- and a three-dimensional
mesh refinement studies have been carried out. In each case, a particularly sensitive
combination of physical problem parameters was chosen to provide practical upper
bounds. In order to obtain directly applicable results, the refinement studies were not
carried out on uniform grids, but employed dynamic mesh adaptation with the same
refinement parameters as described above.

4.3.1. Two dimensions

Table 2 contains the results of the two-dimensional refinement study. The choice of
parameters for this study was as follows: the downstream and lateral displacements of
the secondary body were both 2 primary body diameters, the diameter ratio was 1/2,
and the Mach number was 10. In this configuration, complex shock interactions were
observed between the secondary and primary bow shocks ahead of the secondary
body. The calculated forces on the secondary could therefore be expected to be
sensitive to shock position alterations resulting from increases in the effective mesh
resolution.

Up to three additional levels of refinement over the base grid were used, each with
a refinement factor of 2. The Cp and C; values are given in each case, as well as
the change in value from that at the previous level of refinement. The coefficients
do appear to be converging, but are indeed quite sensitive. Between the two highest
refinement levels, the changes in the drag and lift are ~1% and ~2 % of the drag
value, respectively. We would expect the majority of configurations to be significantly
less sensitive to resolution changes than the current one, however.

4.3.2. Three dimensions

The choice of parameters for the three-dimensional refinement study was
downstream and lateral displacements of 1.5d; and 1.25d; respectively, a diameter
ratio of 1/2, and a Mach number of 10. This combination was selected because, as in
the two-dimensional case, shock interactions are clearly present in this configuration.
In this case, the primary bow shock impinges directly upon the secondary: as may be
seen in the analogous area of figure 8 (1.6 < r/d; < 2.0), such impingement results
in large gradients in the force coefficient profiles. Resolution changes can thus be
expected to have a major influence on the force evaluation.

Simulations were carried out for one to four levels of additional refinement (always
of refinement factor 2) over the base grid (table 3). The values are converging, but
again the lift especially is sensitive to changes in refinement level. Visualizations of
these simulations show that increasing the effective resolution causes a slight decrease
in the primary bow shock radius, or, alternatively, a small increase in the effective
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Additional levels

of refinement Cp ACp Cr ACL
1 1.264 —0.176
2 1.442 0.178 —0.019 0.157
3 1.423 —0.019 0.052 0.071
4 1.408 —0.015 0.087 0.035

TaBLE 3. Cp and C values for the three-dimensional refinement study.

lateral displacement of the secondary body. This is consistent with the more positive
lift values observed at higher levels of refinement.

The computation with four additional levels required approximately 35000 h CPU
and took approximately 10 days wall clock time to complete on 144 processors. Thus,
given current computing performance, the maximal number of additional levels that
can realistically be used is three. From table 3, we estimate the maximal errors in
drag and lift at this level of resolution to be ~2 % and ~5 %, respectively, of the
mean drag value. Note that these errors will be smaller, however, in configurations
that are less sensitive to changes in shock position.

5. Comparison of theoretical and computational results
5.1. Two dimensions

In figure 9, the two-dimensional drag and lift coefficients obtained with the analytical
methodology of §3.1 are compared with those obtained from two-dimensional com-
putations for various choices of the downstream displacement and the diameter ratio.

Theoretical profiles both with and without x-derivatives are included, as are the
computational values obtained at both M, =10 and 50. The lateral displacement
has been normalized in each case by the corresponding shock radius — in the
theoretical cases this may be obtained directly, whereas the computational radii were
estimated from visualizations of the flow. In each case, the downstream displacement
is the centre-to-centre value: the shock stand-off distance was also estimated from
visualizations in order to allow the calculation of an appropriate x/d; value for the
analytical model.

We first note that agreement for r/R, close to either 0 or 1 is generally poor. This
is to be expected, however, as near r/R; =0, the secondary body in the numerical
simulations interacts with the primary body wake region and separation shock, neither
of which is present in the blast wave analogy. At slightly larger r/R;, the influence
of the blast-wave entropy wake will also be present. Similarly, as r/R, approaches
1, the secondary begins to interact with the primary bow shock, and the analytical
model is no longer valid. Away from these two extremes, however, the computational
trends are reasonably well captured by the theory. The body-size effect that was noted
earlier in the analytical model is also present in the numerical simulations, and is
well-predicted by the model. There is generally little to choose between the profiles
with and without x-derivatives, although those that include these terms do show a
slight tendency to overestimate the drag coefficient value.

5.2. Three dimensions

In figure 10, a comparison is made between the three-dimensional theoretical
and computational coefficients, with the lateral displacements again having been
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FIGURE 9. Comparison of theoretical model with computations in two dimensions: —,
theoretical without x-derivatives; ———, theoretical with x-derivatives; [0, computational,
M, =10; A, computational, M., =50. Downstream displacement (a, b) 2 primary diameters,
(c,d) 4 primary diameters. Diameter ratio (a, ¢) 1/2; (b, d) 1/6.
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FIGURE 10. Comparison of theoretical model with computations in three dimensions: —,
theoretical without x-derivatives; ———, theoretical with x-derivatives; [, computational,
M, =10; A, computational, M, = 50. Downstream displacement (a—c) 1.5 primary diameters,
(d) 4 primary diameters. Diameter ratio (a, d) 1/2; (b) 1/4; (c) 1/8.
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normalized by the relevant shock radii. The same comments as in the two-dimensional
case apply for r/R; close to either O or 1. In general, however, agreement for
intermediate values of r/R, is not as good: in particular, the theoretical drag
coefficient profiles drop off somewhat more rapidly with decreasing r/R, than do
the computational values. The influence of the entropy wake thus appears to be
more prominent here, and this results in the variable p{ decaying more quickly
in the theoretical model than is physically realistic. The ability of the model to predict
the lift coefficients for intermediate values of r/R; is surprisingly good, however, with
the body-size effect again accurately described. In contrast to the two-dimensional
case, the profiles that include x-derivatives show slightly better agreement than those
without. Also, as might be expected, the theory is better able to predict the M., =50
values than those at M., = 10.

5.3. Shock radius discrepancy

As noted previously, all lateral displacements in the coefficient profiles presented
in this section have been normalized by the relevant shock radius, theoretical or
computational. There was, however, a significant discrepancy between the theoretical
and computational shock radii in all cases, with the theoretical value being consistently
lower. This discrepancy is well understood, however, as arising from the assumption
of a point generation of energy in the blast-wave analogy. In any physical situation,
the flow energy is produced over the finite area of the body surface, and this results
in the shock radius being displaced outwards from the blast-wave value.

This discrepancy does limit the predictive power of the theoretical model somewhat,
as the actual shock radius must be known before the model may be reasonably applied.
However, a single experiment or computation with only the primary body present
would suffice to obtain the shock radius at all distances downstream of interest, and
the analytical model could then be applied with this knowledge.

Alternatively, several authors have proposed empirical correlations to the shock
shape produced by a blunt body based on experimental data (see, e.g. Ambrosio &
Wortman 1962; Billig 1967). The shapes given by these correlations are surprisingly
accurate, and could be used to provide a more accurate shock radius to which the
methodology could be applied. Another alternative would be to introduce the concept
of an effective origin for the shock radius in the far field that would be displaced
outwards relative to the axis of symmetry. For the current spherical geometry, for
example, it was found that for large Mach numbers (M, = 50) a displacement of
approximately a quarter of the primary sphere diameter would give much improved
agreement with the computational shock radius.

6. Experimental investigation
6.1. The T5 hypervelocity shock tunnel

A series of experiments has been performed in the T5 hypervelocity shock tunnel at
the California Institute of Technology to determine the forces on the secondary body
in several spherical proximal body configurations. The TS is a free-piston driven,
reflected shock wind tunnel, capable of producing flow speeds of up to 6kms~! for
test times of millisecond duration. The facility is illustrated schematically in figure 11,
and further details may be found in Hornung et al. (1991).

The test gas in all experiments was carbon dioxide, chosen to maximize the test
time length and minimize the amount of luminosity produced during each shot.
All experiments were performed at nominally the same test condition, but there
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FiGURE 11. Vertical cross-section of the TS5 facility, with enlargements of the junctions between
major components. A contoured nozzle is shown, but in all experiments described here the
nozzle geometry was conical, with an area ratio of 100.

was some variation in reservoir and free-stream conditions between shots owing
to differences in the primary diaphragm burst pressure. For each shot, reservoir
conditions were calculated from measured pressures and the incident shock speed
using ESTC (Equilibrium Shock Tube Calculation), due to Mclntosh (1969). Free-
stream conditions were then calculated at the relevant point downstream with
NENZF (Non-Equilibrium NoZzle Flow), due to Lordi, Mates & Moselle (1966).
Representative values for the reservoir pressure and enthalpy were 17 MPa and
9.4MJkg ', while the free-stream velocity, density and Mach number were typically
3100ms~!, 0.035kgm™ and 4.5, respectively.

6.2. Experimental set-up

A schematic of the apparatus for this series of experiments is shown in figure 12.
The primary sphere, of diameter 63.5mm, was mounted rigidly to the test section
by means of a sting and supporting plates. The mounting mechanism allowed for
changes in the vertical and horizontal positions of the primary sphere. The secondary
sphere, of diameter 32 mm, was suspended from the roof of the test section by two
cotton threads in a V-arrangement. At the beginning of each shot, the cotton threads
were destroyed by the onset of the flow, allowing for free-floating model behaviour
during the test time.

A catcher mechanism consisting of a bent hollow tube was mounted directly
behind the secondary sphere. The purpose of this device was two-fold: first, it
served to terminate the sphere motion after the conclusion of the steady-flow period,
preventing the accumulation of a velocity sufficient to damage the model or the
internal instrumentation. Rubber padding on the face of the catcher lessened the
resulting impact. Secondly, in those experiments in which an accelerometer was
mounted inside the secondary sphere, the catcher provided a path by which the
accelerometer cable could leave the test section without being exposed to the hostile
flow environment. Further protection was provided in the relevant shots by a thin
metal tube that was attached to the rear of the sphere. This tube was initially
positioned so that it could move unimpeded into the hole in the centre of the catcher,
and ensured that the sphere was guided towards the catcher after the test time.

The presence of the catcher might be expected to influence the measured forces,
given that the existence of subsonic regions in the secondary wake allows the
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FIGURE 12. Arrangement of apparatus in the T5 test section (to scale). The scale relative to
the facility may be gauged by comparing the nozzle opening in the left-hand wall of the test
section with the nozzle in figure 11.

propagation of information upstream from the catcher, affecting the flow on the
rear of the body. Numerical simulations were performed in order to investigate this
effect. The flow over a sphere in a uniform perfect gas free stream of appropriate
Mach number and ratio of specific heats was simulated, both with and without
a cylindrical body of the same relative size as the catcher present. It was found
that the inclusion of the catcher led to a slight shift in the separation point from
the rear of the sphere, and a resulting decrease in the drag by approximately 2 %.
Although these simulations give only an indication of the influence of the catcher in
proximal configurations, the percentage change in the drag value is unlikely to exceed
this amount. Also, the effect on the lift is likely to be small, given the negligible
contribution to the lift from the rear part of the sphere.

6.3. Measurement techniques

Two means of force-measurement were employed in this series of experiments. In
both cases, the quantities measured were accelerations (indirectly in the first case,
directly in the second), with the relevant forces being easily obtained from these.

The first means of measuring the secondary forces was through images obtained
from high-speed digital cinematography. The optical system employed was a
conventional Z-arrangement schlieren: a Vision Research Phantom v5 digital camera
was used in conjunction with a continuous white light source to record a sequence
of schlieren images during each shot. The resolution was either 256 x 128 or 256 x 64
pixels, with the frame rate set to the maximum value in each case of 25000 or 38 000
frames per second, respectively.

The first step in deriving secondary acceleration values from the images obtained
in a given shot was the construction of displacement profiles in the drag and lift
directions. To this end, each image in the sequence was processed by an edge-
detection routine, and a circle was fitted in the least-squares sense to the locus of
edge points corresponding to the secondary body. This gave the x and y coordinates
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FiGure 13. Displacement profiles of the secondary body in the (a) drag and (b) lift
directions during T5 shot 2330: ¢, model locations; —, fitted quadratic polynomial. Resulting
accelerations (a) x =13104+93 ms=2; (b) y=168+ 59ms~2.

of the body, together with the scaling factor that transformed from image to physical
dimensions.

To determine the drag and lift accelerations from the trajectory thus obtained, it
was assumed that these were constant over the steady test time. This allowed quadratic
polynomials to be fitted in the least-squares sense to each of the x and y displacement
profiles as functions of time, with the acceleration in each case being given simply by
twice the quadratic coefficient. The error in each of the fits was estimated from the
residuals in a manner described by Meyer (1975). An example of this process is shown
in figure 13. Each of the x and y displacement profiles are plotted as a function of
time, with the curve given by the least-squares fit over the steady flow time shown by
the solid line, and the resulting accelerations indicated in the caption.

Note that the total motion of the sphere during the test time is less than 3 mm,
meaning that our assumption of a fixed physical configuration during the test time is
reasonable. Also, the maximum velocity achieved during this time is approximately
10ms~!, which is negligible compared to the flow velocity.

The second means of measuring the drag force on the secondary sphere was
through direct measurements of the acceleration by an internally mounted uniaxial
accelerometer. This method was not used in all of the experiments in the current series,
however, for the following reasons. The first experiment in this series, TS5 shot 2322,
was a validation experiment in which the secondary sphere was situated outside the
primary shock, and thus exposed to the uniform free stream. In this experiment, good
agreement was observed between the drag values obtained from the accelerometer
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. Experimental Computational
Shot Axial Lateral Shock
number displacement displacement position Cp C. Cp C.
2322 - - Sphere outside 0.97 + 0.07 (accelerometer) 0.956 (perfect gas)
0.95 + 0.07 (images) 0.995 (real gas)
2326 1.07 1.21 Impinging 1.44 +0.09 0.02 +£0.11 1.40 0.23
upper
2327 1.25 1.18 Just impinging 1.43 + 0.11 (accelerometer) 1.34
2328 1.25 1.18 Just impinging 1.35 + 0.11  0.07 £ 0.11 1.34 0.01
2329 1.50 1.21 Sphere inside 1.08 + 0.15 —0.13 + 0.09 1.05 —0.05
2330 1.50 1.67 Impinging 1.11 £ 008 0.29 +0.05 1.01 0.28
lower

TaBLE 4. Force coefficients obtained from experiments and corresponding numerical
simulations. Displacements are given in primary body diameters. Coefficients are from the
image data unless indicated otherwise.

and from the images (table 4). However, although we would expect the inclusion of
the metal pipe necessary to protect the accelerometer cable to have a negligible effect
on the measured forces in this zero-lift configuration, for those cases in which the
secondary was exposed to the primary shock-processed flow, this would not necessarily
be true. In particular, the lift could be affected by the presence of this tube in such
configurations. Given the agreement that was observed between the two measurement
methods in the validation experiment, as well as in two further experiments using
identical configurations (TS shots 2327 and 2328 — see table 4), it was decided to run
the remaining proximal body experiments in the cleaner configuration obtained by
removing the accelerometer and protective tube.

In those experiments in which the accelerometer was included, the model used was
the Endevco model 7270-2K. The power spectrum of the acceleration signal obtained
during TS5 shot 2322 is shown in figure 14(a). The resonant frequency of this model
is approximately 90kHz, and a large peak in the spectrum is observed near this
value, with another peak near 55kHz. As our test time is of the order of 1ms, it is
a simple matter to remove these frequency components from the signal by the use of
a low-pass filter. The signal resulting from this, and from further box-car smoothing,
is shown in figure 14(b). As can be seen, the transient loading produced by the flow
start-up is much larger than the loading produced during the steady-flow time.

6.4. Numerical simulation of experiments

For each of the experimental configurations, a perfect gas numerical simulation was
carried out using the AMROC software. For the validation experiment, T5 shot
2322, the simulation was similar to those described earlier, albeit with a single sphere
and appropriate values of M, and y (see below). A drag coefficient of 0.956 was
calculated. For this configuration, simulations were also carried out by J. Olejniczak
using the DPLR non-equilibrium code (see Wright, Candler & Bose 1998). This code
includes viscous effects as well as source terms for chemical reactions and vibrational
relaxation processes. The free-stream conditions were consistent with the experimental
conditions at the relevant point downstream, and both reacting and perfect gas flows
were simulated. A body-fitted grid with axisymmetric geometry was used. The drag
coefficient in the perfect gas case was 0.997; that in the reacting case was 0.995.
These differences are small and could be due to grid artefacts rather than reaction
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FIGURE 14. (a) Power spectrum of the accelerometer signal recorded during TS5 shot 2322;
(b) resulting signal after low-pass filtering and smoothing. The steady test time is indicated by
the dashed vertical lines.

effects. We conclude that the effect of flow chemistry on the forces is small at these
conditions, although viscous effects may contribute around 4 % to the drag.

For the remaining configurations, in order to simulate the flow produced by the
conical nozzle of the T3, slightly divergent inlet flow was specified in a way consistent
with the downstream location of the models. The ratio of specific heats was also
consistent with the free-stream composition and temperature at the downstream
location of the primary body. A value of y =1.19 was calculated using the NASA
Glenn thermodynamics database tool, Thermobuild (see http://cea.grc.nasa.gov/).

The computational parameters for the numerical simulations were similar to those
used in the three-dimensional refinement study described in §4.3. Three additional
levels of refinement were used over the base grid, with refinement factors of 3 at
the highest level and 2 at lower levels. Referring to our error estimates from the
refinement study then, we would expect refinement errors of, at most, 2 % and 5 %
of the drag value, respectively, in the computational drag and lift coefficients. For the
calculation of the computational force coefficients, the reference density and velocity
were taken at the downstream location of the centre of the primary sphere, rather
than at the inlet, to maintain consistency with the experimental coefficients.

6.5. Results

Figure 15 shows experimental and computational schlieren images from one
experimental condition. As may be seen, the shock impingement points on the
secondary body are relatively close, although the experimental shock radius appears
slightly smaller. This may be partly due to the finite resolution of the simulation, given
the effect of increases in resolution that has been noted in the refinement study. Also
contributing to this discrepancy may be the lack of real-gas effects in the numerical
simulation, as these are known to lead to a narrowing of the shock radius.

The force coeflicients measured in the experiments are given in table 4 and compared
with the corresponding computational coefficients. The axial and lateral relative
displacements of the centres of the two bodies are given in terms of the primary
body diameter. The shock position entry indicates the location of the primary bow
shock relative to the secondary body. In most cases, the shock was impinging on
the secondary body, a situation in which we have seen the lift value especially to be
sensitive to the exact impingement point of the shock.
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FiGure 15. Experimental and computational schlieren images of T5 shot 2330. The
experimental image has been rotated to correct for the rotation in the TS5 optical system.

Overall, however, good agreement is obtained between the experimental and
computational coefficients. The experimental drag values are consistently slightly
higher than the computational values, but agree to within the measurement errors
(agreement is obtained for shot 2330 if we include a refinement error of 2 %). The
higher experimental values may be explained by the lack of viscous force components
in the numerical simulations: we have noted that these can contribute around 4 %
to the drag value, although this effect may be compensated for to some degree by
the presence of the catcher in the experiments. The experimental lift values generally
have relatively large errors associated with them owing to the small lift to drag ratios,
but agreement is obtained to within the measurement error for three of the four cases,
the exception being shot 2326.

7. Conclusions

The hypersonic proximal bodies problem has been explored for simple geometries
using analytical modelling, numerical simulation and experiments.

An analytical methodology based on the blast-wave analogy was developed and
used to model configurations consisting of two circular cylinders and two spheres.
The forces acting on the secondary body were predicted for situations in which the
secondary lies completely inside the primary bow shock. A strong body-size effect
was observed in both cases that resulted in an increasingly negative lift coefficient
as the secondary body size was increased. It was also found that, in the case of two
spheres, a secondary body of diameter greater than approximately one-sixth that of
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the primary body would experience an exclusively negative lift coefficient inside the
shocked region.

These configurations were also simulated numerically using the AMROC software
and the resulting force coeflicients were compared with those obtained from the
analytical model. Reasonably good agreement was observed if the lateral displacement
of the secondary was normalized by the shock radius in each case. The strong entropy
wake in the blast-wave solution was noted to lead to discrepancies at smaller lateral
displacements, however, especially in the spherical case.

Finally, a series of experiments was performed in the TS5 hypervelocity shock tunnel.
A new force-measurement technique was developed, and this was employed to measure
the forces on the secondary body in several proximal spheres configurations. Perfect-
gas numerical simulations of all run conditions were carried out, and generally good
agreement was observed between the numerical and experimental force coefficients.
The measurement technique provided two means of determining the drag force, and
the agreement observed between these gives a further degree of confidence in the
results obtained.
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